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Cryptotephra deposits (microscopic volcanic ash) are important geochronological tools that can be used
to synchronize records of past environmental change. Here we report a distal cryptotephra from a Ho-
locene peat sequence (Canopus Hill) in the Falkland Islands, in the South Atlantic. Using geochemical
analysis (major- and trace-element) of individual volcanic glass shards, we provide a robust correlation
between this cryptotephra and the large mid-Holocene explosive eruption of Mt. Hudson in Patagonia,
Chile (H2; ~3.9 ka cal BP). The occurrence of H2 as a cryptotephra in the Falkland Islands significantly
increases the known distribution of this marker horizon to more than 1200 km from the volcano, a
threefold increase of its previous known extent. A high-resolution radiocarbon chronology, based on
terrestrial plant macrofossils, dates the H2 tephra to 4265 ± 65 cal yr BP, suggesting that the eruption
may have occurred slightly earlier than previously reported. The refined age and new geochemical
reference dataset will facilitate the identification of the H2 tephra in other distal locations. The high
concentration of glass shards in our peat sequence indicates that the H2 tephra may extend well beyond
the Falkland Islands and we recommend future studies search for its presence across the sub-Antarctic
islands and Antarctic Peninsula as a potentially useful chronological marker.

Crown Copyright © 2021 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Volcanic ash (tephra) dispersed from explosive volcanic erup-
tions has become a principal geochronological tool for correlating
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environmental records (e.g., Alloway et al., 2013; Lane et al., 2017).
The near instantaneous deposition of tephra over large distances
and its often-unique chemical signature allows tephra layers to
provide time-parallel marker horizons (isochrones) (Turney and
Lowe, 2001). Tephra isochrones can be used to synchronize re-
cords of past environmental change between sites and represent
one of the most robust and versatile dating methods (Lowe, 2011).
The application of tephra isochrones has been extended to include
microscopic ash deposits (cryptotephras) which have been found in
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distal areas thousands of kilometres from source volcanoes (e.g.,
Dugmore, 1989; Wastegård et al., 2000; Dunbar et al., 2017;
Kearney et al., 2018; Smith et al., 2020).

Despite the value that tephrochronology offers as a powerful
geochronological tool, the technique has been underutilized in
many regions. One such area is the South Atlantic, a region that
owing to the prevailing mid-latitude westerly airflow, is favourably
positioned downwind from themajor volcanic zones (AVZ and SVZ;
Austral and Southern Volcanic Zones) of southern South America
(Fig. 1). Explosive volcanism is known to have occurred frequently
at numerous volcanoes along these zones throughout the Holo-
cene, including Mts. Burney, Aguilera and Reclus within the AVZ
andMt. Hudson in the SVZ (Fig. 1a; Stern, 2008; Fontijn et al., 2014).
Tephras from these volcanic centres have previously been identi-
fied in lakes and peat bogs throughout southern Patagonia (Killian
et al., 2003; Weller et al., 2015; Fontijn et al., 2016; Del Carlo et al.,
2018; Smith et al., 2019). Only a limited number of cryptotephra
deposits originating from Patagonian explosive volcanism have
previously been reported in peat bogs across the Southern Atlantic,
including the Falkland Islands and South Georgia (Hall et al., 2001;
Oppedal et al., 2018), with the most recently identified linked to
eruptions at Mt. Burney (MB1; 8.85e9.95 ka cal BP) and the Reclus
Volcano (R1; 14.76 ± 0.18 ka cal BP (Monteath et al., 2019; Stern
et al., 2011).

Tephrochronology studies in this region offer potential for the
alignment of proxy reconstructions investigating climate and
environmental change, including Southern Hemisphere westerly
wind flow (Kilian and Lamy, 2012; Moreno et al., 2014; Lamy et al.,
2010). Unfortunately, few distal tephras (>100 km) have been
described in this region and the precise ages and distribution of key
marker horizons remain uncertain. Here we present the results of
new tephrostratigraphic investigations of the Canopus Hill peat
sequence in the Falkland Islands (Fig. 1b), with a focus on the
provenance and significance of a mid-Holocene cryptotephra
Fig. 1. Patagonia in southern South America depicting (a) the volcanoes (triangles) known to
and Southern Volcanic Zones as defined by Stern (2004). (b) Location of the Falkland Islands
reported (Table S1). (1) Haberle and Lumley (1998); (2e3) Naranjo and Stern (1998); (4) Fag
Markgraf et al. (2007); Weller et al. (2018); Elbert et al. (2013); Weller and Stern (2018); (2
Paunero (1994); (25) Paunero (2000); (26) Zanchetta et al. (2021).
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identified in the succession.

2. Study area and methods

2.1. The Falkland Islands and the Canopus Hill sequence

The Falkland Islands are situated in the South Atlantic, 540 km
east of the South American coast. The islands lie in the central
latitudinal belt of the southern westerly winds (SWW) and have
high monthly and annual windspeeds (6e9 ms�1) (Upton and
Shaw, 2002; Clark and Wilson, 1992). Peat bogs cover more than
~85% of the Falkland Islands and are ideal archives to trap and
preserve volcanic ash (Otley et al., 2008). The combination of the
prevailing airflow and abundance of peat makes the Falkland
Islands ideally positioned to receive and preserve tephras from the
major volcanic zones in South America (Fig. 1). Observations of
modern volcanic eruptions suggest Patagonian ash fall has been
deposited over the Falkland Islands, including ash from the 1991
Hudson eruption plume (Scasso et al., 1994; Kratzman et al., 2010).

To investigate the presence of distal cryptotephra, a 1.6 m peat
sequence was extracted with a D-section corer from an exposed
Ericaceousegrass peatland on Canopus Hill (51.691� S, 57.785� W)
outside Port Stanley. Previous research at this site recognised the
input of exotic pollen and charcoal derived from South America
(Turney et al., 2016), as well as a multi-proxy reconstruction of
atmospheric circulation changes (Thomas et al., 2018).

2.2. Tephrostratigraphy

The Canopus Hill peat sequence contained no visible tephra
layers. The sequence was sampled contiguously every 4 cm. Sam-
ples were oven-dried (60 �C), weighed into ceramic crucibles (0.2 g
dry wt.) and then ashed at 550 �C to concentrate any present
cryptotephra (Dugmore, 1989; Pilcher and Hall, 1992). The mineral
have erupted during the Holocene (Global Volcanism Program, 2020) from the Austral
and study site at Canopus Hill. Black dots represent locations where H2 tephra has been
el et al. (2017); (5e8) Stern et al. (2016); Fagel et al. (2017); (9e21) Weller et al. (2015);
2) Stern et al. (2019); (23) Cardich (1985); Stern (1991); Naranjo and Stern (1998) (24)
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component was sieved (90e25 mm), centrifuged andmounted onto
glass slides with Canada balsam. Glass shards were counted using a
light microscope. The concentration of volcanic ash shards was
determined as shard number per gram of dry sediment. Where
shard concentrations were too high for counting (e.g., >10,000/
gram of dry sediment) counts were extrapolated based on the
number of traverses across the slide. This process was repeated at
1 cm intervals where high concentrations of glass shards were
detected to determine the exact depth of the cryptotephra peak.
The depth interval displaying a peak in volcanic glass shards was
then re-sampled and subjected to density separation techniques to
isolate the shards (as described in Blockley et al., 2005). The glass
shards were then picked using a micromanipulator and embedded
into an epoxy resin stub for geochemical characterization.

2.3. Grain-specific major and trace element analysis of tephra

The major element volcanic glass composition of the tephra was
determined using a wavelength-dispersive JEOL JXA-8200 electron
microprobe at the School of Archaeology, University of Oxford. Full
analytical conditions are reported in Text S1. All glass data pre-
sented has been normalized to 100 wt% (water-free) for compara-
tive purposes. Error bars on plots represent reproducibility,
calculated as a 2� standard deviation of replicate analysis of MPI-
DING StHs6/80-G reference glass (Jochum et al., 2006). The full
glass dataset of the Canopus Hill cryptotephra and the secondary
standard (MPI-DING reference glasses) data are reported in the
Supplementary Dataset. Trace element analysis of volcanic glass
shards from the Canopus Hill cryptotephra, and the Hudson 2
reference ash deposit from Lago Quijada, Chile (see Smith et al.,
2019 for details) were performed using an Agilent 8900 triple
quadrupole ICP-MS (ICP QQQ) coupled to a Resonetics 193 nm ArF
excimer laser-ablation in the Department of Earth Sciences, Royal
Holloway, University of London. The full analytical conditions are
reported in Text S1. Full trace element glass datasets for the
Canopus Hill cryptotephra and a Hudson 2 reference sample from
Lago Quijada are provided in the Supplementary Dataset, along
with the MPI-DING glass analyses (StHs6/80-G and ATHO-G).

2.4. Chronology

Fifteen radiocarbon ages and one 137Cs age for the Canopus Hill
peat sequence have previously been published in Thomas et al.
(2018). These 14C ages were derived using terrestrial plant macro-
fossils (fruits and leaves) and were given an acidebaseeacid (ABA)
pre-treatment. Samples were pretreated, combusted and graphi-
tised in the University of Waikato AMS laboratory, and the 14C/12C
measurements performed at the University of California at Irvine
(UCI) on a NEC compact (1.5SDH) AMS system. The 14C measure-
ments were supplemented by 137Cs measurements near the top of
the profile to detect the onset of nuclear tests in the mid- 20th
century, undertaken following standard techniques with mea-
surements made using an ORTEC high-resolution, low-background
coaxial germanium detector. For this study, an additional macro-
fossil sample (graminoid fragments) was extracted for 14C dating
from the sequence at 134 cm, to help constrain the existing age-
depth model. The macrofossil was pre-treated, graphitised and
measured on an Ionplus MICADAS at the University of New South
Wales Chronos 14Carbon-Cycle Facility (Turney et al., 2021). The
sixteen radiocarbon and one 137Cs ages are here recalibrated with
SHCal20 (Hogg et al., 2020) and Bomb13SH1-2 (Hua et al., 2013),
and an age-depth model recalculated using the P_sequence outlier
analysis in OxCal 4.4 (Bronk Ramsey, 2008, 2017; Bronk Ramey,
2009; Bronk Ramsey and Lee, 2013). All radiocarbon ages for
Canopus Hill are provided in Table S2.
3

3. Results and discussion

3.1. Tephrostratigraphy and chronology

Volcanic glass was found in varying abundances throughout the
Canopus Hill sequence. Most shards were clear and appeared light
pink, but a smaller proportion were darker. A distinct peak in vol-
canic glass occurred within the 136e140 cm and 140e144 cm in-
tervals of the peat sequence (Fig. 2a; Fig S1). These intervals
contained very high concentrations (>40,000 shards per gram) of
clear/light pink volcanic glass shards. Further examination at 1 cm
resolution indicated the peak in glass shards occurred between
139e140 cm (Fig. 2b.). The morphology of the shards at 139 cm
were predominantly formed of clear, platy and cuspate shards. The
age depth model for the Canopus Hill sequence is almost identical
to that in Thomas et al. (2018), but now includes an additional
macrofossil 14C age from 134 cm (UNSW-1: 3752 ± 11 14C yrs BP) to
provide an additional constraint for the tephra age. This new age
model indicates the age of this cryptotephra deposit is
4265 ± 65 cal yrs BP (Fig. 2a), based off the midpoint of the cryp-
totephra at 139.5 cm.

3.2. Geochemical characterization and origin of the CP-139
cryptotephra

The CP-139 cryptotephra has a relatively heterogeneous volca-
nic glass composition that straddles the trachydacite-rhyolite
boundary (67.3e70.6 wt% SiO2; 8.9e9.7 wt% Na2O þ K2O; Fig. 3a).
These volcanic glasses also display a High-K calc-alkaline affinity
(HKCA; 3.2e3.6 wt% K2O). Using increasing SiO2 as a fractionation
index, the CP-139 glasses display a clear decrease in TiO2, FeOt, MgO
and CaO contents, whilst the K2O content increases. Incompatible
trace element contents of the CP-139 glasses reveal minor hetero-
geneity (e.g., 458e534 ppm Zr; 40e46 ppm Y; 891e946 ppm Ba)
and show Light Rare Earth Element (LREE) enrichment relative to
the Heavy Rare Earth Elements (HREE) (La/Yb ¼ 9.6 ± 4.7 [2.s.d]).

The SiO2 content of the CP-139 glass shards is relatively low
compared to those of known widespread tephra units from large
magnitude eruptions within the AVZ, for instance activity at Mt.
Burney, Reclus and Aguilera (Fig. 3). Furthermore, widespread
tephras from Mt. Burney and Reclus consist of glass compositions
with a calc-alkaline affinity (CA; Smith et al., 2019) inconsistent
with the source of the CP-139 tephra. Further north in the SVZ of
the Andes, a number of volcanoes active during the Holocene have
erupted HKCA deposits, including Quatrupillian, Sollipuli and Lanín
(Fontijn et al., 2016). However, chronological inconsistency com-
bined with a clear offset to higher Na2O content in the CP-139 glass
shards, relative to the products of these volcanoes at overlapping
SiO2 content, clearly preclude any potential correlations.

The CP-139 glass shards are indistinguishable at a major element
level from the HKCA products of Hudson volcano in the SVZ, and
specifically the mid-Holocene Hudson-2 (H2) that was chemically
characterised in Smith et al. (2019). Near-source (55 km NE) major
element glass data reported in Smith et al. (2019) was generated
from well constrained H2 ash layers preserved in Lago Quijada and
Lago Espejo thatwere previously identified byWeller et al. (2015). To
test the strength of our major element correlation, we compared
trace elements concentrations from CP-139 glass shards to new
grain-specific data produced here for the H2 tephra at Lago Quijada.
Trace element concentrations observed in CP-139 are consistent
with the H2 tephra at Lago Quijada (Fig. 4), subtly differing from
those of the Hudson-1 tephra (e.g., higher Ba, lower Sr content), and
can be clearly distinguished from the less enriched incompatible
trace element contents (e.g., Th, Y, Zr) of other widespread tephra
units erupted within the AVZ (Del Carlo et al., 2018).



Fig. 2. Tephrostratigraphy of the Canopus Hill sequence. (A) Glass shard concentrations of samples spanning 4 cm intervals from 0 to 164 cm and the updated age depth model for
the Canopus Hill peat sequence (Thomas et al., 2018). Probability distributions generated from the Bayesian age model are shown including the 1s and 2s age ranges (dark and light
blue envelopes respectively). Red symbols indicate radiocarbon ages (outliers) not incorporated into the age model. (B) The glass shard concentrations between 135e143 cm at 1 cm
intervals. (C) Image of volcanic shards from the CP-139�cryptotephra (light microscope, 20� magnification).
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3.3. Implications

3.3.1. Dispersal and spatial extent of the H2 tephra
The first detailed report of H2 deposits by Naranjo and Stern

(1998) was based on ICP-MS bulk tephra trace element chemistry
and chrono-stratigraphy (Table S3). These showed an easterly
dispersal with thicknesses that ranged from 40 cm at 55 km from
the volcano, to <5 cm at 90 km fromMt. Hudson. H2 is widespread
(>10 cm-thick) near the city of Coyhaique (80 km NE; sites 9e21 in
Fig. 1) and has been reported 140 km to the SSE near Cochrane
(<2 cm-thick; sites 5e8 in Fig. 1). H2 tephra is also reported at
several distant localities 350e430 km SE, including the Los Toldos,
Cerro Tres Tetas and La María archaeological sites (sites 23e25 in
Fig.1; Cardich,1985; Paunero,1994, 2000; Naranjo and Stern,1998).
Geochemical and chronological data supporting the identification
of H2 tephra at these sites is provided in Tables S1, S3 and Fig. S2
(C.R Stern previously unpublished). Importantly, recent work has
identified the H2 tephra 400 km east of source, within Atlantic
coast aeolian sedimentary deposits near Caleta Olivia, Argentina
(Zanchetta et al., 2021, Fig. 3). The occurrence of H2 as a crypto-
tephra (CP-139) in the Falkland Islands (1280 km SE of Mt. Hudson),
verified by its grain-specific major and trace element glass com-
positions (Figs. 3e4), significantly extends the previously known
distribution of this marker horizon (Fig. 1; Table S1).

The occurrence of H2 in the Falkland Islands also indicates that
the widespread distribution of ash by high altitude winds may have
been in a more SE direction than previously reported. According to
Naranjo and Stern (1998), the dispersal axis of tephra fall from the
4

H2 eruption, inferred from near-source deposits, was predomi-
nantly in an easterly direction (N85�E). However, satellite obser-
vations and simulations of phase II of the 1991 eruption - a possible
analogue for the H2 eruption, indicate the ash plume was initially
directed to the south before moving to the east and settling into a
fixed SE direction (Kratzmann et al., 2010; Constantine et al., 2000).
At its peak, the plume was elongated (1500 km SE) and reached a
width of 370 km over the Falkland Islands (Scasso et al., 1994).
Indeed, distal transport to the SE is supported by the reported H2
occurrences in the localities of Los Toldos, Cerro Tres Tetas and La
María. These sites are also directly in linewith the SE distribution of
the Hudson 1991 tephra (Scasso et al., 1994). H2 deposits at these
sites are >5 cm, which is similar to or greater than the thickness of
the 1991 tephra that fell at these localities, according to the iso-
pachs drawn by Scasso et al., (1994). This and the occurrence of H2
ash in the Falklands suggests that distal distribution of H2 tephra to
the SE was as great, if not greater than during the 1991 eruption.

3.3.2. Age of the H2 eruption
Previous age estimates for the H2 eruption are summarised in

Table S1. The commonly cited age (3600 BP; ~3.9 ka cal BP) was
derived from 14C ages of bulk organic soil, sediment and peat
bracketing the tephra (Naranjo and Stern, 1998; Weller et al., 2018).
However, most studies reporting H2 tephra have adopted this age
without providing an independent estimate (e.g., Weller et al.,
2015; Stern et al., 2016). Other age-estimates have been extrapo-
lated from lake sediment cores using bulk radiometric dates (3535
BP; Haberle and Lumley, 1998) and bulk sediment samples



Fig. 3. Major element biplots comparing major elements of individual glass shards of CP-139 cryptotephra and widespread Holocene-Late Glacial tephra units originating from the
volcanoes of the AVZ (Mt. Burney [MB1], Reclus [R1] and Aguilera [A1]) and the SVZ, (Hudson-1 [H1] and Hudson-2 [H2]) (data from Smith et al., 2019). The H2 major element glass
data from Lago Quijada and Lago Espejo are reported in Smith et al. (2019), whilst the distal occurrence of Caleta Olivia, along the Argentine Atlantic coast, is reported in Zanchetta
et al. (2021). The Caleta Olivia tephra shows subtle offsets in Na2O content (Fig. 3D), however this is likely attributed to differing analytical operating conditions. Also shown are
glass compositions of HKCA tephra layers from volcanoes located further north in the Southern Volcanic Zone including Chait�en, Lanín, Quetrupillan and Sollipulli (Fontijn et al.,
2016). (A) Total alkali vs. Silica diagram follows Le Bas et al. (1986) and (B) SiO2 vs K2O classification diagram following Percerillo and Taylor (1976). Plots E-F illustrate H2 datasets
only. Major and minor element glass data presented has been normalized to 100 wt% (water-free), and error bars represent 2 standard deviations of repeat analyses of the StHs6/80-
G secondary standard run alongside CP-139.
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Fig. 4. Trace element biplots showing the concentrations of individual glass shards from the CP-139 cryptotephra (Falkland Islands), the mid-Holocene Hudson-2 (H2; Lago
Quijada). Also shown are the trace element concentrations of the Hudson-1 (H1), Mt. Burney-1 (MB1), Mt. Burney-2 (MB2), and Reclus-2 (R2) tephra deposits, which relate to the
Del Carlo et al. (2018) EO-2L, EO-2D, EO-1b and LA-IB samples. 2 � standard deviation error bars associated with repeat analyses of the StHs6/80-G secondary standard run
alongside the CP-139 and H2 samples are typically smaller than the data symbols.
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(~3970 cal BP; Elbert et al., 2013). Support for a slightly older age is
provided at Lago Castor (3.97e4.11 ka cal BP; (Van Daele et al., 2016)
and at Caleta Olivia (4058 ± 36 BP; 3967e4216 2s cal range BP) for a
shell dated directly below the H2 tephra in coastal aeolian deposits
(Zanchetta et al., 2021).

Our age-depth model suggests the H2 tephra is slightly older
(4265 ± 65 cal BP) than these previously reported age estimates. A
possible explanation is that bulk sediment, that forms the majority
of previous dating of the H2 eruption, may incorporate root ma-
terial or downward vertical migration of microfossils by water
movement/flow, both of which would result in a younger radio-
carbon age determination. In contrast, the Canopus Hill age depth
model was derived from terrestrial plant macrofossils. Dating
short-lived terrestrial plant remains ensures that the assimilated
atmospheric CO2 is near-contemporaneous with the terrestrial
environment, reflecting time of deposition (Lowe andWalker,1997;
Turney et al., 2000). Furthermore, the sampling site at Canopus Hill
is a local topographic peak, which greatly reduces the potential for
the redeposition of old material into the sediment sequence
(Thomas et al., 2019). Indeed, previous dating of the Canopus Hill
sequence found virtually identical probability distributions for
paired 14C ages for different peat fractions (bulk/macrofossil/fine)
dated from the same depth (Thomas et al., 2019). This provides
confidence that the Canopus Hill age depth model is robust and
likely provides a more accurate age for the H2 eruption.

Given this older age of 4265 ± 65 cal BP, the H2 tephra may
provide a key marker horizon for the MiddleeLate Holocene
Boundary (4.2 ka BP; Walker et al., 2012), an important climatos-
tratigraphic boundary for which there are limited absolute time
markers across the Southern Hemisphere. In South America, it
marks the end of a period of widespread aridity that resulted in
6

human population decline and/or collapse (Riris and Arroyo-Kalin,
2019). The H2 cryptotephra may therefore provide an important
isochron for terrestrial and marine studies across SE Patagonia
during a period of significant palaeoclimatic and prehistoric soci-
etal change across this region.

3.3.3. Prospects for distal and ultra-distal correlations
This discovery opens new possibilities for the investigation of

Andean tephras in ultra-distal facies, including Antarctic ice cores,
which have the potential to enable precise correlation of terrestrial,
marine, and ice records (Dunbar et al., 2017; Di Roberto et al., 2019).
Andean volcanoes, including Mt. Hudson, have been proposed as
possible sources of tephra preserved in Antarctic ice cores (Narcisi
et al., 2012; Kurbatov et al., 2006). For instance, Narcisi et al. (2012)
proposed Mt. Hudson as the likely source of trachybasaltic (sample
TD193; 2021 ± 66 BP) and rhyolitic (sample TD216; 2355 ± 54 BP)
microtephras in the Talos Dome Core in East Antarctica. However,
these correlations based on geochemistry and age have been
questioned by Del Carlo et al. (2018) who suggest that circum-
Antarctic volcanoes are equally feasible sources for these micro-
tephras and that Andean sources should therefore be reconsidered.
Despite this, Koffman et al. (2017) have correlated cryptotephra
deposits in surface snow and shallow firn samples from the West
Antarctic Ice Sheet to the 2011 CE Puyehue-Cord�on Caulle eruption
in Chile. This demonstrates that Andean tephra from modern
eruptions can be transported to Antarctica. In summary, whilst
there is limited evidence for Andean tephras in Antarctic ice cores,
the potential for H2 cryptotephra to be found in Antarctica and
across the Southern Ocean is an exciting prospect. We recommend
future studies search for its presence across the sub-Antarctic
islands and Antarctic Peninsula as a potentially useful
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chronological marker.

4. Conclusion

The identification of a distal trachydacite-rhyolitic cryptotephra
(CP-139) from the H2 eruption in the Falkland Islands greatly in-
creases the previously known distribution of this key marker ho-
rizon. The high concentration of glass shards in our peat sequence
suggests that the tephra may be more widespread than presently
understood and may serve as an important isochron for the South
Atlantic Ocean and possibly Antarctica. Our reference dataset of
major and trace element glass composition can be used to identify
the H2 tephra in other distal locations and is an important contri-
bution in the development of a regional framework for the teph-
rostratigraphy of Patagonia. Finally, this research sets a precedent
for further work into identifying South American cryptotephra in
the sedimentary records of the Falkland Islands.
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